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COMMENT 
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College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 14 July 1987 

Abstract. A renormalisation group method is presented to derive the fractal dimension for 
the diffusion-limited aggregation ( DLA). In a non-equilibrium steady state the dissipation 
energy and the conductivity of the surface layer play the roles of the free energy and the 
coupling constant in an equilibrium state. The renormalisation group transformation of 
the conductivity of the surface layer is obtained in the replacement of the coupling constant. 
The renormalisation group equation has a non-trivial solution where the derivative at the 
fixed point has a positive value of less than one. This is consistent with the theorem of 
minimum entropy production. The fractal dimension is expressed in terms of the derivative 
of the renormalisation group equation at the fixed point. The fractal dimension d, = 1.628 
is found by using the 2 x 2 small cell renormalisation. 

Recently, there has been increasing interest in the physical mechanisms governing the 
structure in the diffusion-limited aggregation ( DLA) (Witten and Sander 1981, Meakin 
1983, Family and Landau 1984, Stanley and Ostrowsky 1985, Pietronero and Tosatti 
1986, Stanley 1986, Meakin et a1 1987, Hayakawa er a1 1987). It is well known that 
they have a strong measure of self-similarity, which is characterised by the fractal 
dimension D (Mandelbrot 1982). Several analytical attempts, including mean-field 
theories (Muthukumar 1983, Tokuyama and Kawasaki 1984, Matsushita et a1 1986) 
and position space renormalisation group methods (Could et al 1983, Green 1984, 
Nakanishi and Family 1985, Kolb 1987), have been made to derive the fractal 
dimension. Halsey et a1 (1986) and Amitrano et al (1986) found the multifractal 
structure of the growth probability distribution in the surface layer. Nagatani (1987) 
presented a real space renormalisation group method to derive the multifractality. 

Since there was no Hamiltonian formulation of DLA, one adopted the position 
space renormalisation group approach in which the change in connectivity of the 
cluster, upon repeated length rescaling, was determined (Could et a1 1983, Kolb 1987). 

In contrast to the theorem of minimum free energy in an equilibrium state, the 
non-equilibrium steady states are characterised by an extremum principle according 
to which the entropy production has its minimum value for a purely dissipative system 
without convection (Glansdorff and Prigogine 1971). The dynamics of the formation 
of DLA can be assumed to be determined by a ‘quasistationary’ diffusion field (Ball 
1986). The process of the formation of DLA is a purely dissipative system without 
convection in a non-equilibrium steady state. The process is characterised by the 
theorem of minimum entropy production or minimum dissipation energy. We consider 
the dissipation energy in contrast to the free energy (or Hamiltonian). 

In this comment, under renormalisation transformation, we consider the dissipation 
energy which is represented by the function of the electric field and the conductivity 
of the surface layer. Under the renormalisation group transformation, the conductivity 
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of the surface layer plays the role of coupling constants. We derive the renormalisation 
group equation of the conductivity of the surface layer. We find the fractal dimension 
in terms of the derivative of the renormalisation group equation at the fixed point. 

We refer to the dielectric breakdown description of DLA. In the discrete version, 
the dissipation energy is given by 

where the first expression represents the summation of dissipation energy on each 
bond over total bonds within the system, and the second indicates the total dissipation 
energy in the representation of which U, and Eo are respectively the total conductance 
and the total voltage drop  of the system. Thus the dissipation energy form ( 1 )  describes 
the interaction between neighbouring potentials by this simple gradient term E, .  The 
total current, carrying through the surface layer of the aggregate, is given by Jr = 

u,>E,\ where the sum indicates the summation over all the bonds on the surface 
layer. We can write the dissipation energy in terms of the surface conductivity: 

where U>, indicates the conductivity of the bonds on the perimeter of the aggregate. 
By using a decimation method, one may write the dissipation energy in terms of the 
coarse-grained variables ah, on the new lattice with the lattice spacing b ( b  is the 
scale factor): 

Thus the short-range interaction between neighbouring potentials by the gradient term 
is renormalised. The surface conductivity U is transformed to U’.  This surface conduc- 
tivity plays the role of the so-called coupling constant in the Hamiltonian of phase 
transition. We can obtain the renormalisation group equation: 

U ’ =  R ( u ) .  (4) 

The renormalisation group transformation (4) of the surface conductivity has been 
found by Nagatani (1987) from a different point of view. Figure 1 shows a schematic 
behaviour of the renormalisation function (4). This has a non-trivial solution U* (> 1). 
At the fixed point U* the derivative d R l d u  has a positive value less than one. The 
equation (4) has a stable fixed point. We here consider the physical meaning of the 
fixed point. After many repeated renormalisations, the surface conductivity approaches 
the value U* at the fixed point. This is proportional to the total conductance ur. Under 
the boundary condition of the constant voltage ( E o  = constant), we consider a perturba- 
tion of the dissipation energy. The variation of the total dissipation energy is given by 

( 5 )  

Since un = R(u,,- ,)  and O <  (du,,/au,-,) < 1 ,  the dissipation energy approaches to the 
minimum value. The theorem of minimum entropy production is consistent with the 
condition that the RG equation (4) has a stable fixed point. 

6Hd - 6 ~ ,  - (au,/au,-,)(au,_,/au._,). . . (au,/auo)6uo. 
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Figure 1. A schematic behaviour of the renormalisation function: U'= R I U ) .  This has a 
non-trivial solution u*(>l).  At the fixed point U* the derivative d R / d u  has a positive 
value less than one. The fixed point is stable. 

We derive the expression of the fractal dimension D in terms of the derivative of 
the RG equation at the fixed point. The number M of particles constituting DLA scales 
as 

M - r D  (6) 
where r is the radius of gyration. The variation of the current is proportional to that 
of the mass: 

SJ - SM. 

From (6) and (7) ,  we obtain 

r - (SJ/ Sr)l ' (D-l) .  

The variation of the current is also proportional to that of the surface conductivity: 

SJ - Sa. ( 9 )  

D = 1 -ln(ao'/aa)*/ln 6 (10) 

Under the scale transformation r = br', we obtain 

where (da'/ao)* indicates the derivative at the fixed point. 
We here consider the RG transformation of the surface conductivity for DLA on the 

square lattice. We cover all the space of the square lattice by cells of edge 6 (scale 
factor), each containing 262 bonds; an example for 6 = 2 is shown in figure 2. After 

Figure 2. Illustration of the dividing and rescaling of a b = 2 cell for DLA on the square 
lattice. 
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a renormalisation transformation, these cells play the role of 'renormalised' bonds. 
The renormalised bonds are then classified into three types of bond: ( a )  break bonds 
which construct the aggregate; (6)  growth bonds which are on the perimeter of the 
aggregate and can be successively grown; ( c )  unbroken bonds which surround the 
aggregate, except for the growth bonds. The renormalisation procedure is indicated 
by figure 3. If the cell is spanned with the break bonds then the renormalised bond 
is considered to be broken (figure 3 ( a ) ) .  If the cell is not spanned with the break 
bonds and  is the nearest neighbour to a cell with spanning cluster, then the cell is 
renormalised as the growth bond (figure 3 ( b ) ) .  When the cell is constructed by 
unbroken bonds only and  is not the nearest neighbour to the cells with spanning 
clusters, the cell is renormalised as the unbroken bond (figure 3(c)). We are concerned 
with the growth bond constructing the surface layer of the aggregate. Figure 4 shows 
an  example of the renormalisation of a part of the surface layer of an  aggregate. The 

1 I 

Figure 3. Illustration of the renormalisation of a b = 2 cell for DLA. The renormalisation 
procedure in the vertical direction is shown. There are three types of bonds: break bonds 
indicated by bold lines, growth bonds by wavy lines and unbroken bonds by light lines. 
Examples of the distinct configurations are shown in ( a ) ,  ( 6 )  and (c ) ,  which are respectively 
renormalised as break, growth and unbroken bonds. 

Figure 4. An example of the renormalisation of a part of the surface layer of an aggregate. 
The lattice on the left-hand side is renormalised to that on the right-hand side, according 
to the rule4 of renormalisation. 
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lattice on the left-hand side is renormalised to that on the right-hand side, according 
to the rules of renormalisation. We define the conductivity of the growth bond as a 
surface conductivity. The non-local nature of the electric field is taken into account 
as the conductivity of the growth bond. We consider the conductivity of the cell that 
it is possible to renormalise as the growth bond. If we consider the renormalisation 
in the vertical direction, we shall then take the periodic boundary conditions in a 
lateral direction. The constant voltage is applied vertically (see figure 5 ( a ) ) .  Figure 
5 ( b )  shows all the configurations of the cell for which it is possible to renormalise as 
the growth bond. Let us consider the configurational probability C, with which a 
particular configuration a appears. The distinct configurations are labelled by a 
(a =0,1 ,2)  in figure 5 ( b ) .  The configuration (1) is constructed by adding a break 
bond to configuration (0). The probability with which a break bond adds onto the 
growth bonds 1 or 2 in configuration (0) is given by the growth probabilities po,,  or 
p0,2 of the growth bonds 1 or 2 in the configuration (0). In addition, by adding a break 
bond to the configuration ( l ) ,  the configuration (2) occurs. The configurational prob- 
abilities C,  are given by 

where po,l = p0,2 and 
from the normalisation condition: 

= pl,3 = p1,4.  The configurational probability CO is determined 

c c, = CO+ c, + c, = 1. 
01 

101 I l l  

(61 

Figure 5. ( a )  Boundary conditions in the renormalisation in the vertical direction. The 
constant voltzge is vertically applied. The periodic boundary condition is taken in the 
lateral direction. ( b )  All distinct configurations of the 2 x 2  cell that i t  is possible to 
renormalise as the growth bond. The configuration ( 1 )  is constructed by adding a break 
bond onto the growth bond 1 or 2 in the configuration (0). Furthermore by adding a break 
bond onto 2, 3 or 4 in the configuration ( l j ,  the configuration ( 2 )  is constructed. 
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The growth probability pu, ,  on the growth bond i within the cell a is proportional to 
the electric field Ei on the growth bond. Consider the electrostatic problem for cells 
which can be renormalised as the growth bond. The electric fields on the growth bonds 
within a cell are determined by the conductivity of growth bonds and  the configuration 
of the cell. In the configuration labelled by a (see figure 5(b) ) ,  the growth probabilities 
pu,i of growth bonds i are given by 

P0,l = P0.2 = i 
~ i , i = ( 1 + 3 a ) / ( 4 + 3 ~ )  p1,2=p1,3=~1,4= 1 / (4+3a)  (13) 

P2.l = Pr.2 = t 
where U indicates the conductivity of the growth bond, and the conductivities of the 
break and unbroken bonds are respectively given by infinite value and  unit value. The 
conductivity ah of the cell with configuration a is renormalised as follows: 

a; = 2u/( 1 + U )  

a : = u + 3 a / ( 1 + 3 u )  (14) 
a; = 2a. 

The renormalised conductivity U’ of the growth bond will be assumed to be given by 
the configurational average 

a’= Coal,+ clo: + cp;. (15) 

The relationships (14) and (15) present the renormalisation group equation U’= R ( u ) .  
Equations (1 1)-( 15) are simultaneously solved. We find a stable fixed point U* = 3.1 11 
from U* = R(a*).  From the derivative (aa’/du)* = 0.647 at the fixed point, we find the 
fractal dimension D = 1.628 via the relationship (10). 

In summary, we present the renormalisation group method to derive the fractal 
dimension of the diffusion-limited aggregation. We propose that, for the self-similar 
structure formed by a steady dissipative process, the dissipation energy and the surface 
conductivity play the role of the free energy and  the coupling constant in an  equilibrium 
phase transition. We obtain the RG equation of the surface conductivity. We find that 
the RG equation has a non-trivial solution (fixed point) where the derivative has a 
positive value less than one. It is found that the condition ( O <  ( a ~ ‘ / a u ) *  < 1) is 
consistent with the theorem of minimum entropy production. The fractal dimension 
is found to be expressed in terms of the derivative, 
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